If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+10t-45=0
a = 4.9; b = 10; c = -45;
Δ = b2-4ac
Δ = 102-4·4.9·(-45)
Δ = 982
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{982}=\sqrt{1*982}=\sqrt{1}*\sqrt{982}=1\sqrt{982}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-1\sqrt{982}}{2*4.9}=\frac{-10-1\sqrt{982}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+1\sqrt{982}}{2*4.9}=\frac{-10+1\sqrt{982}}{9.8} $
| 185=80-y | | x+4-6x=15-8x+10 | | 8p+(5-3)=9+7p | | 22-p=-14 | | 8(0.25)+8x=4(2x+0.5) | | 4,9^2t-10t-45=0 | | 8(v-6)=24 | | 3x2+-16x+-4=0 | | r-97=-7 | | -6+s=0 | | 6x+2=8-4x | | 11x+7=3x+39 | | 5^x-2=246 | | 3x+18=x+54 | | 8(1/4)+8x=4(2x+1/2) | | 6x-2=-8-4x | | 4s+36=32 | | 2. ⅓x+4=½x–3 | | (2x+4)(2x+8)=165 | | 1=f/2 | | 3(7x-2=21x-6 | | 16=h×2 | | 3=4+c | | 7a-3=5a-9 | | 63=-9/2*x | | -0.66x+0.46x=5.8 | | v^2=25/81 | | 2x-3x=-4x-4 | | 3(x+3)+6=6 | | 1+4x+2-5x=3(x-2)-7(x-6) | | 10(x+10)-4=11-5(2x+11) | | 4n+3=n+27 |